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Abstract

Xia proposes a model for investigating the stick–slip motion caused by dry friction of a two-dimensional
oscillator under arbitrary excitations. Instead of the harmonic balance method used by most investigators,
a numerical approach to investigate the system is provided. The concept of the friction direction angle is
introduced to determine the components of the static and kinetic friction force vector and the hyperbolic
secant function is introduced to deal with the transition of the friction force from the static to the kinetic
state. The friction direction angle is determined by either relative velocities or input forces. With this method
the switch conditions for stick state, slip state and stick–slip state can be easily derived. The orbits of the
responses, which are either straight line segments, circular or elliptic are obtained. In the general case, the
orbit of the response is a complex planar curve. Zero-stop, one-stop, two-stops and more than two-stops
per cycle are also found.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In order to simulate the motion of a friction oscillator with a two-dimensional dry friction
constraint, there are two unavoidable matters must be dealt with. One is the hysteresis induced by
the dry friction coefficients of static and kinetic friction and the other is the discontinuity induced
by the stick–slip motion. It is not difficult to determine the components of the kinetic friction force
vector and the state friction force vector individually, but no widely accepted way to treat the
stick–slip motion exists, especially not for complicated mechanical systems. Meng and
Chidamparam [1] use a massless friction damper with two linear springs of finite stiffness to
obtain the components of the friction force vector. However, when the stick–slip motion takes
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place the formulation was not provided rigorously. The method provided in their paper is not
convenient for handling the two-dimensional dry friction in complicated mechanical systems.

For some special cases, the excitations are sinusoidal with the same frequency and with different
amplitudes or phases and the orbits of responses will be reduced to straight line segments or to
circular or elliptic shapes. In these cases the harmonic-balance method is widely used to give an
analytical approximate solution [1–5]. However, for complicated excitations, e.g., sinusoidal
excitations with different frequencies in two orthogonal directions or even time series, the orbit of
the response will become a complex self-intersecting planar curve, and in this case the harmonic-
balance method fails.

For dynamic systems with dry friction, Den Hartog [6] presented a closed-form solution as
early as in 1931 for the steady-state zero-stop response of a harmonically excited oscillator with
Coulomb friction. Since then one-stop, two- and multiple-stops per cycle have been reported [7].
Responses with bifurcations and chaos have also been found in many fields [8–11], but most of the
research efforts have focused on one-dimensional dry friction models, which means that the
motion is along a straight line.

The two-dimensional Coulomb friction oscillator has wide applications in the fields of the
freight-bogies on railways, turbo-machinery, earth quake theory and robot-walking mechanisms.
Here our attention mainly shall be turned towards applications to the so-called wedge dampers in
the three-piece-freight-bogie and dry friction dampers in the bogie Y25. In both cases they are
used to dissipate the vibration energy produced by the interaction between wheels and rails [12–
14]. Up to now, only a few reports on the response of wedge dampers with two-dimensional dry
friction have been published. In order to understand the dynamical performances of the wedge
damper, which basically is a two-dimensional dry friction oscillator, the responses of a two-
dimensional dry friction oscillator should first be understood and implement a basic numerical
method. For the non-linear discontinuous dynamic systems with complex excitations in
orthogonal directions, an analytical solution cannot be found, so numerical methods must be
used.

In Section 2 a mass–spring system with the mass sliding along a dry surface when it is subjected
to an external force is modelled. The friction direction angle and the determination of the
components of the friction force vector are discussed in Section 3. The stick–slip motion analysis
is discussed in Section 4; and the numerical simulation, some results and discussions of the system
are provided in Section 5.

2. Description of a two-dimensional friction oscillator

Consider the two-dimensional friction oscillator shown in Fig. 1. The mass m is in contact with
a plane surface and it is connected to fixed walls by two linear springs and two linear viscous
dampers along the x and y directions, respectively. Newton’s second law applies, and the
equations of motion of the system can easily be written as

m .x þ cx ’x þ kxx þ Fxm ¼ Fx; ð1Þ

m .y þ cy ’y þ kyy þ Fym ¼ Fy; ð2Þ
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where the components of the friction forces Fxm and Fym must satisfy the relation:

Fm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

xm þ F2
ym

q
pmN; ð3Þ

where N is the normal force on the mass, which in general is a state-dependent variable, for the
sake of simplicity it is assumed to be constant. m is the friction coefficient, which has two states: a
static coefficient of friction ms; and a kinetic coefficient of friction mk: The friction force can
therefore be written as Fm ¼ �Nf ðV Þ; where f ðV Þ is determined by the relation [9]

f ðV Þ ¼

mk if V > 0;

�mspf ðVÞpms if V ¼ 0;

�mk if Vo0:

8><
>: ð4Þ

The velocity V of the mass has the components ’x and ’y; which determine the direction of the
kinematic friction force. It reads

jV j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
’y2 þ ’x2

p
: ð5Þ

The derivatives of x and y are with respect to the time t: The friction direction angle between ’x
and ’y is defined by

y ¼

tan�1ð ’y= ’xÞ; ð ’xX0; ’ya0Þ;

p� tan�1ð ’y= ’xÞ; ð ’xo0; ’yX0Þ;

pþ tan�1ð ’y= ’xÞ; ð ’xo0; ’yo0Þ:

8><
>: ð6Þ

Hence, the components of the friction forces can be expressed in the following way:

Fxm ¼ Fm cos y; Fym ¼ Fm sin y: ð7Þ

The driving forces Fx and Fy are arbitrary but in the present paper they are assumed to be simple
harmonic functions with driving (angular) frequencies oxd and oyd ; respectively:

Fx ¼ fx0 cos ðoxdtþ fxÞ; Fy ¼ fy0 cos ðoydtþ fyÞ; ð8Þ

where fx0 and fy0 are the amplitudes and fx and fy are the phases.
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Fig. 1. A two-dimensional friction oscillator.
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In the case of kx ¼ ky ¼ k and cx ¼ cy ¼ c; the time and the displacements may be rescaled as

xs ¼
kx

N
; ys ¼

ky

N
; t ¼ t

ffiffiffiffiffiffiffiffiffi
k=m

p
; oxd ¼ Ox

ffiffiffiffiffiffiffiffiffi
m=k

p
; oyd ¼ Oy

ffiffiffiffiffiffiffiffiffi
m=k

p
: ð9Þ

Eqs. (1) and (2) can then be written in dimensionless form:

.xs þ x ’xs þ xs þ f ðmÞ cos y ¼ bx cosðOxt þ fxÞ; ð10Þ

.ys þ x ’ys þ ys þ f ðmÞ sin y ¼ by cosðOyt þ fyÞ; ð11Þ

where

bx ¼ fx0=N; by ¼ fy0=N; x ¼ c=
ffiffiffiffiffiffiffi
km

p
ð12Þ

and the friction direction angle y remains in the same form as Eq. (6) except that ’x and ’y are
replaced by ’xs and ’ys:

3. The friction direction angle and the components of the friction force vector

In order to define a friction force vector on a plane, its modulus and argument must be known.
The modulus of the friction force vector is determined by Eqs. (3) and (4), and its argument is
given by the angle y shown in Fig. 2. Then the x and y components of the friction force can be
determined. The angle y is called the friction direction angle. The dry friction is assumed to be
isotropic.

If the velocity components Vx ¼ ’x and Vy ¼ ’y of the mass are different from ð0; 0Þ then the
friction direction angle is determined by the angle between the velocity Vx and the resultant
velocity V : The modulus of the friction force vector is then equal to the normal force times the
kinetic friction coefficient, viz. Fm ¼ Nmk: The direction of the friction force is opposite to the
resultant velocity V as shown in Fig. 2(a) due to the isotropy. The friction direction angle is given
by the velocities Vx and Vy in Eq. (6), and then the components of the friction force vector are
given by Eq. (7).

If ðVx;VyÞ equals ð0; 0Þ then the maximum value of the friction force is equal to the normal force
times the static friction coefficient, viz. Fm ¼ Nms; and the corresponding components of the
friction force are equal to the corresponding input forces, viz. Fxm ¼ Finx; Fym ¼ Finy: Although
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Fig. 2. The friction direction angle in a two-dimensional friction oscillator.
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the mass is in rest, the friction force is not zero. This state is called a non-zero static friction force

equilibrium state, and the friction force vector is equal and opposite to the input force, which is
shown in Fig. 2(b). The effect of the torque caused by the input force and friction force is
neglected in the present paper. In other words, the input forces Finx and Finy can be used to
determine the friction direction angle alternatively, viz.

y ¼

tan�1ðFiny=FinxÞ ðFinxX0; Finya0Þ;

p� tan�1ðFiny=FinxÞ ðFinxo0; FinyX0Þ;

pþ tan�1ðFiny=FinxÞ ðFinxo0; Finyo0Þ:

8><
>: ð13Þ

When both the velocities and the input forces of the mass are equal to zero, then the friction force
is zero and the system is also in equilibrium. This state is called a zero friction force equilibrium
state. In this case the friction direction angle is undetermined.

The definition of the friction direction angle, y is now extended to include the two cases in
Eqs. (6) and (13). It is determined in the following way:

y ¼

wð ’xs; ’ysÞ ð ’xs3 ’ysa0Þ;

cðFinx;FinyÞ ð ’xs4 ’ys ¼ 0; Finx3Finya0Þ;

| ð ’xs4 ’ys4Finx4Finy ¼ 0Þ;

8><
>: ð14Þ

where wð ’xs; ’ysÞ denotes the representation of y by (6); cðFinx;FinyÞ stands for the representation of
y by Eq. (13) and | is the empty set of y: The symbol 3 means disjunction and the 4 denotes
conjunction. As a consequence, the components of the friction force vector in the two orthogonal
directions can be determined by the following formulae:

Fxmk ¼ Fm cos y

Fymk ¼ Fm sin y

)
ð ’xs4 ’ysa0Þ j ð ’xs4 ’ys ¼ 0;

jFinxjXjFxmsj; jFinyjXjFymsjÞ;

ð15Þ

Fxmt ¼ Finx

Fymt ¼ Finy

)
ð ’xs4 ’ys ¼ 0; jFinxjojFxmsj; jFinyjojFymsjÞ: ð16Þ

Note that the components of the maximum friction force vector in the x and y directions,
Fxms;Fyms that are used in the conditions are determined by

Fxms ¼ RðyÞNms cos y;

Fyms ¼ RðyÞNms sin y: ð17Þ

where the function RðyÞ is defined as

RðyÞ ¼
1; yAY;

0; yeY

(
ð18Þ

in which the symbol Y stands for a non-empty set of y: Eq. (18) is used to determined the stick–
slip switch conditions as it can be seen in the next section.
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In the case of a one-dimensional friction oscillator, the friction direction angle reduces to 0 or p
(motion in x direction) or p=2 or 3p=2 (motion in y direction). Therefore, the friction direction
angle can be used to instead of the sign function.

4. Stick–slip motion analysis

4.1. The resultant force and input force

When the resultant velocity of the mass is equal to zero, it is said that the system is in the stick-
phase. In this case the friction coefficient attains its maximum value ms and the associated friction
force may reach its maximum value, which is the same as the definition of the maximum static
friction force. If the acting force (input force) is less than the static friction force there is no
motion occurring, because the static friction force will balance the input force. If the input force is
larger than the static friction force, the balance will break and the mass will move under the action
of the input force and the friction force with the kinetic friction coefficient mk: The resulting
motion is a consequence of the stick–slip action of the friction force. In order to deal with the
stick–slip motion, the friction direction angle and the determination of the related components of
the friction force vector can be used, which have just been discussed in the previous section.

In the case of a moving mass, which is called the slip-phase, the resultant forces are

Fxh ¼ Finx � Fxmk; ð19Þ

Fyh ¼ Finy � Fymk ð20Þ

and if the mass comes to rest, which is called the stick-phase, the resultant forces are

Fxl ¼ Finx � Fxm; ð21Þ

Fyl ¼ Finy � Fym; ð22Þ

where Fxm;Fym denote the acting friction forces. They are equal to Fxmk;Fymk for the slip-phase and
Fxmt;Fymt for the stick-phase, respectively. The friction forces Fxmk;Fymk;Fxmt;Fymt are determined
by Eqs. (15) and (16). The input forces are defined by

Finx ¼ bx cosðOxt þ fxÞ � x ’xs � xs; Finy ¼ by cosðOyt þ fyÞ � x ’ys � ys; ð23Þ

which may be used to find the friction direction angle.
The dependence of the friction coefficient on the relative velocity, was determined in three ways

in Ref. [10]. Here a fourth approximate description is used [15,16].
In order to obtain a continuous transition of the friction forces from zero to non-zero speeds as

a weight function the hyperbolic secant function is introduced

sechðZÞ ¼
2

ðe�Z þ eZÞ
: ð24Þ

To this end, the resulting forces acting on the mass at arbitrary speeds are defined as

Frx ¼ Fxl sechð ’xsaÞ þ Fxhð1 � sechð ’xsaÞÞ; ð25Þ
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Fry ¼ Fyl sechð ’ysaÞ þ Fyhð1� sechð ’ysaÞÞ; ð26Þ

where a is a parameter that is related to the speed of the mass. A specified value of a provides the
corresponding approximate friction characteristics.

This model is well suited for the numerical implementation since the user remains in control of
the numerical process during the switch from stick to slip. Fig. 3 shows the curves of friction force
as a function of the speed for various values of the parameter a:

Finally, the dynamical equation reads:

m 0

0 m

" #
.xs

.ys

" #
¼

Frx

Fry

" #
: ð27Þ

4.2. Conditions for stick–slip motions

If the input forces satisfy the condition

jFinxj > jFxmsj3jFinyj > jFymsj ð28Þ

or ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

inx þ F2
iny

q
> jFmj ð29Þ

then the mass will change from the stick phase, to the slip phase.
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Fig. 3. The friction force with unit normal force as a function of the velocity for different parameter values a:
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When the system is in the slip phase, if it change to the stick phase the input forces must satisfy
the following conditions:

jFinxjojNms cos y sechða ’xsÞ þ Nmk cos yð1 � sechða ’xsÞÞj;

jFinyjojNms sin y sechða ’ysÞ þ Nmk sin yð1� sechða ’ysÞÞj: ð30Þ

During the slip-phase changing to stick-phase the velocity will change continuously. When the
motion into the stick phase the components of the friction force vector are determined by Eq. (16).

5. Characteristics of the two-dimensional friction oscillator

5.1. Special cases of the system

If the external force in Eqs. (10) and (11) along the y(or x) direction is zero, it means that the
mass only moves along the x(or y) direction. In this case the problem reduces to a one-
dimensional friction oscillator, which has been investigated by many researchers [1,6–10]. With
the method introduced above, the friction direction angel y then is either 0 or p; so the sign
function can be replaced by the friction direction angle.

If two excitation forces share the relations Ox ¼ Oy and fx ¼ fy; then

bx cosðOxt þ fxÞ
by cosðOyt þ fyÞ

¼ Constant: ð31Þ

Then there is a linear relation between the two friction force components, and Eqs. (10) and (11)
can be reduced to a one-dimensional dynamic system:

.z þ c’z þ z þ my0 ¼ bz cosðOzt þ fÞ; ð32Þ

where the y0 takes the values of 0 or p and the orbit of the response is a straight line segment.
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Fig. 4. The straight line segment orbit of the response to different amplitudes and the same frequencies of excitations.

Left fours: responses and phase diagrams; Right fours: friction forces and friction direction angles.
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In order to show this, the parameter values are chosen as: ms ¼ mk ¼ 0:4; bx ¼ 0:4; by ¼ 0:2
and Ox ¼ Oy ¼ 0:7; xx ¼ xy ¼ 0:5; fx ¼ fy ¼ 0: The simulation results are shown in Fig. 4, in
which the four left plots show the displacements and the phase diagram; and the right four plots
show the friction force (in the figure the limit friction force overlaps the acting friction force) and
the friction direction angle.

For cx ¼ cy; kx ¼ ky; i.e., a symmetric system, the response will have a circular orbit when the
mass is excited by a sinusoidal excitation where the x and y components differ in phase by p=2 [1].
The results are shown in Fig. 5 for comparison with the results in Ref. [1]. In the figure, the left
four plots show the displacements, the phase diagram, the velocities and the exciting forces. If the
amplitudes of the exciting forces are large enough then the acting friction force is identical to the
limiting locus of the friction force. In the case where the amplitudes of the exciting forces are small
as shown in the right four plots of Fig. 5, then the acting friction force is less than the limiting
locus of the friction force and obviously the system is in rest. In the figure, the dotted circle
denotes the limiting locus of the friction force and the solid circle shows the acting friction force.

The orbit of the response will be elliptic under the excitations

Ox ¼ Oy; fxafy ð33Þ

and the difference in phase differs from p=2: Letting the parameters bx ¼ by ¼ 0:5; Ox ¼ Oy ¼
0:2; kx ¼ ky ¼ 1; xx ¼ xy ¼ 1; fx ¼ 0;fy ¼ p=4 and mk ¼ ms ¼ 0:4: The displacements, the
phase diagram, the orbit of the response, the friction forces and the friction direction angles
are shown in Fig. 6. It is easy to see that there exist two stops per cycle. Correspondingly, in the
plot of the acting friction force Fmy versus Fmx the circle is seen to be divided into two segments
with a gap around Fmy ¼ 0: Therefore the acting friction force is inside or on the limiting locus of
the friction force. This means that there are two stick states per cycle. When the static coefficient
of friction equals the kinematic coefficient of friction, the curve of the limiting locus of the friction
force on the two-dimensional plane is a circle.
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Fig. 5. Left: responses to sinusoidal excitations differing in phase by p=2; ms ¼ mk ¼ 0:4 bx ¼ by ¼ 0:5; kx ¼ ky ¼ 1;
xx ¼ xy ¼ 1; fx ¼ 0; fy ¼ p=2: Right: the trajectory, the friction forces and the friction direction angle with the

parameters are same as the left except bx ¼ by ¼ 0:3:
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5.2. Multiple stops per cycle

In the case of one-dimensional friction, there are many types of steady state behaviour:
permanent sticking, zero stop per cycle (i.e., non-sticking oscillation), one-stop, two-, four-, six-
stops per cycle, and so on [7]. As an example, only two- and four-stops per cycle are shown here.
However, the three-stops per cycle are also found for the two-dimensional friction case. The
results are shown in Fig. 7.
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Fig. 6. Responses of the stick–slip state in which the orbit is elliptic: ms ¼ mk ¼ 0:4; bx ¼ by ¼ 0:5; Ox ¼ Oy ¼ 0:2;
kx ¼ ky ¼ 1; xx ¼ xy ¼ 1; fx ¼ 0;fy ¼ p=4:

Fig. 7. Left: two and three-stops per cycle: ms ¼ mk ¼ 0:4; bx ¼ 0:4; by ¼ 0:3; Ox ¼ 0:3 and Oy ¼ 0:2; xx ¼ xy ¼ 0:5;
Right: two and four-stops per cycle along x and y directions, respectively: the parameters are same as the left except for

the Oy ¼ 0:15:
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5.3. General responses of the system

In general case, the orbit of the response to arbitrary amplitudes and frequencies both in x and
y directions is a plane curve. As an example, let the initial phases be zero. Fig. 8 shows the steady
state of the displacements and the phase diagram in the left four plots of the figure. The orbit of
the response and the corresponding friction direction angle are shown in the right four plots of the
figure. The figure clearly shows that the orbit of the response is not a simple circle or an ellipse but
a rather complex planar curve.

6. Conclusions

A method is provided to simulate the stick–slip motion of a two-dimensional dry friction
oscillator under complex excitations. The friction direction angle has been defined and
successfully used to replace the sign function that is widely used in the one-dimensional friction
oscillator. With the friction direction angle both the module and the argument of the friction force
vector can be determined for the stick state as well as for the slip state. By the switch-condition the
stick–slip motion can be simulated numerically under various excitations.

The two-dimensional coupled oscillator can be uncoupled under certain conditions. The orbit
of the responses of a two-dimensional friction oscillator will be a straight line segment, a circle or
an ellipse depending on the details of the sinusoidal excitations. In the general case, the response is
a complex planar curve. For various levels of excitations, the zero-stop, one-stop, two-stops and
multiple stops per cycle will appear.

There are still some topics such as velocity-dependent friction coefficient, the collapse of the
state space of the system caused by stick–slip motion and a variable normal force that need
investigation. Especially, if the normal force is a state-dependent variable, the problem will
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Fig. 8. Response to sinusoidal excitations with different amplitudes and frequencies: ms ¼ 0:4; mk ¼ 0:3; xx ¼ xy ¼ 1;
bx ¼ 0:5; by ¼ 0:3; Ox ¼ 0:5; Oy ¼ 0:7; Left fours: responses and phase diagrams; Right fours: the orbit of the

response and the friction direction angle.
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become more complicated. That case will be discussed in connection with our investigation of the
model of wedge dampers in three-piece-freight-bogie on railways [16].
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